Search results for "hyperspectral images"

showing 3 items of 3 documents

Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval

2018

This paper introduces a feature selection method based on random forest -the Guided Regularized Random Forest (GRRF)- which can be used in classification and regression tasks. The method is based on the regularization of the information gain in the random forest nodes to obtain a subset of relevant and non-redundant features. The proposed method is used as a preliminary step In the process of retrieving biophysical parameters from a hyperspectral image. Preliminary experiments show that we can reduce the RMSE of the retrievals by around 7% for the Leaf Area Index and around 8% for the fraction of vegetation cover when compared to the results using random forest features.

Mean squared error22/3 OA procedurebusiness.industryComputer scienceFeature extractionHyperspectral images0211 other engineering and technologiesHyperspectral imagingPattern recognitionFeature selection02 engineering and technologyBiophysical parameter retrievalRegularization (mathematics)RegressionRandom forestFeature selection0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceLeaf area indexbusinessRandom forest021101 geological & geomatics engineeringIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders

2017

Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan yhdistetään ennalta tuntematon data ja poikkeavuudet, muodostuu ongelma vielä laajemmaksi. Spektraalisten poikkeavuuksien havaitsemiseen on kehitetty useita eri menetelmiä, mutta spatiaalisten poikkeavuuksien havaitseminen on huomattavasti hankalempaa. Tässä työssä esitellään uudenkaltainen menetelmä sekä spatiaalisten että spektraalisten poikkeavuuksien samanaikaiseen havaitsemiseen. Menetelmä on suunniteltu erityisesti spektraaliselle datalle, mutta soveltuu myös perinteisil…

hyperspectral imagesautoencoderautoenkooderithdbscanSCAEconvolutional neural networkdeep learninghavaitseminenneuroverkotanomaly detectionconvolutional autoencodermachine learningkoneoppiminenpoikkeavuuskonvoluutioälytekniikkaCAEhyperspektrikuvatautoenkooderi
researchProduct

An evaluation framework and a benchmark for multi/hyperspectral image compression

2011

International audience; This paper benchmarks three multi/hyperspectral image compression approaches: the classic Multi-2D compression approach and two different implementations of 3D approach (Full 3D and Hybrid). All approaches are combined with a spectral PCA decorrelation stage to optimize performance. These three compression approaches are compared within a larger comparison framework than the conventionally used PSNR, which includes eight metrics divided into three families. The comparison is carried out with regard to variations in bitrates, spatial, and spectral dimensions variations of images. The time and memory consumption difference between the three approaches is also discussed…

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognition02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingcompressionwaveletsWavelet[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingCompression (functional analysis)Hyperspectral image compression0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinessDecorrelation[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingMulti/hyperspectral images021101 geological & geomatics engineeringImage compression
researchProduct